- Construct graphs of data using the *FourierTransform_ActivityGraph.ods* file.
 - Each graph should have data that appears random but has data points at one or more regular time intervals.
 - Time axis from 0 s to 60 s
 - Each graph contains two signals at the periods indicated below, with noise included in the signal. These are created in the *FourierTransform_ActivityGraph.ods* file.
 - 1. (3, 7)
 - 2. (4, 7)
 - 3. (3, 8)
 - 4. (4, 9)
 - 5. (4, 6)
 - 6. (3, 5)
 - 7. (5, 9)
 - 8. (5, 7)
 - 9. (6, 9)
 - 10.(5,8)

50 s on time-axis = 7.50" \rightarrow 1 s = 0.15"

```
Intro
```

• Hand out a blank graph of signal vs. time to each student.

- Demonstrate gnuradio sound of single, clean periodic pulses at 1.0 s intervals. Ask students to sketch what they think the pulse would like like on the graph.
- Have students discuss their graph with another student; then discuss as class:
 - Have a volunteer sketch their graph on the board
 - Why does your graph represent what you heard?
 - How is the *period* of a wave represented in your graph?
 - This is an example of a periodic signal.

- Signals that are not noise usually have some sort of pattern that is repetitious periodic.
- Review the *period*, *amplitude*, and *frequency* of this signal, and how each is represented in a signal.
- Then demonstrate gnuradio pulses with noise added. Ask students to sketch what they think the signal would look like in this case.
- Students compare with a neighbor.
- Then discuss as class:
 - What's different?
 - What's the same?
 - Noise is usually not periodic. Recall from yesterday: Signals carry information. When processing signals, it is necessary to distinguish the signal from the noise.
 - Recall Tad's presentation with the photo filtiering. This is filtering of amplitude.
 - Another method scientists use is filtering by frequency. Scientists have methods to filter signals by frequency (or period).
- Signal Processing Activity
 - Demonstrate process with the teacher graph
 - explain masks.
 - demonstrate sliding process to identify periods.
 - explain that a periodic signal must fill at each period translation.
 - explain how noise shows up signals less than 1.0 (usually), and not periodic.
 - Explain offset.
 - Group students into pairs.
 - Handout signal sheets and masks. Explain that they are to determine the periods in each signal graph; then replot the data showing only those periodic signals, without noise.
 - Have students sketch the Signal vs. Frequency graph that corresponds to their
- Post Activity Discussion
 - What challenges are there determining the periodic signals in the total signal?
 - For the 3 s and 4 s signals, harmonics show up. How do you think we can distinguish whether the actual signal is the 3 s, 6 s, or 9 s?
 - Many siganls are a mixing of multiple frequencies next activity with Howard.
 - Scavenger hunt clue.

- Motivation: Explain/remind students that waves are repetitious, e.g. water waves oscillate periodically. Information can be carried in the pattern, e.g. the morse code activity done previously.
- Show sample graphs:
 - Example showing sum of sinusoidal signals. What periodic waves are in this?
 - Example with periodic pulse signal in noise.
 - What repetitious (periodic) waves in this signal?
 - Demonstrate masking method for determining the periodic waves in this.
 - Lay the mask over the graph and slide the mask until each opening aligns with the data at one second intervals.
 - By sliding the mask to match up with the data at each one second interval the period of the signal can be determined.
- Pair students up. Hand out graphs and masks to each group.
 - Students are to use the mask method to determine the period of any waves in their graph.
 - Have each group sketch what the graph would look like if there were no noise.
 - Extension: On a signal vs. frequency graph, have each group plot signal vs. frequency.
- Scavenger hunt:
 - \circ column (0 9) determined by amplitude of stronger signal
 - row (X R) determined by frequency of weaker signal; use a table to convert frequency to a letter.