Radio Astronomy: Lesson 4
 Celestial Coordinate Systems

How do we describe the positon of an astronomical object in space?

- Celestial bodies are assumed to be on the inner surface of a sphere of infinite radius with the earth at its center.
- Assume the earth does not move, but instead the celestial bodies rotate about it in a predictable manner.

1. Spherical Coordinates:

2. Terrestial Coordinates: Longitude and Latitude The zero point for longitude is the prime meridian which runs through Greenwich.

3. Horizontal Coordinates: Azimuth and Elevation

Zenith: The point vertically above an observer and is 90° from all points on the horizon. The nadir is 180° opposite zenith.
The celestial meridian is great circle which intersects the zenith, the nadir, and the celestial poles.
The astronomical horizon is a great circle on the celestial sphere which is perpendicular to the zenith-nadir axis.
The coordinates of an object are described by its azimuth and elevation.

- The azimuth is defined in degrees clockwise from due North.
- Elevation is defined in degrees above the horizon.

4. Equatorial Coordinates: Right Ascension and Declination

- Most commonly used in astronomy.
- Not tied to observer's location.
- Locations of stars are fixed in the equatorial coordinate system.
- Projection of the terrestial longitudes and latitudes onto the celestial sphere.

Celestial Poles: points vertially above the earth's north and south poles
Celestial Equator: projection of the earth's equator onto the celestial sphere

Right Ascension (RA):

- longitudinal coordinate
- $\mathrm{RA}=0^{\circ}$ at the prime meridian
- 1 hr of $\mathrm{RA}=15^{\circ}$

Declination (Dec):

- latitude coordinate
- \quad Dec $=0^{\circ}$ at the celestial equatorial
- North Celestial Pole (NSP) $=+90^{\circ}$ Dec; South Celestial Pole (NSP) $=-90^{\circ}$ Dec

5. Galactic Coordinates

- The Milky Way Galaxy is disk-like
- A spherical coordinate system with the sun at its center.
- Describes the positions of objects in the Milky Way Galaxy in relation to the sun (us).
- Galactic longitude rotates 360° in the plane of the galaxy.
- galactic longitude $\theta=0^{\circ}$ is toward the center of the galaxy, from the sun's point of view.
- galactic longitude $\theta=180^{\circ}$ is directly away from the center of the galaxy.
- Galactic latitude rotates 180° from the galactic north pole to the galactic south pole.

- The galaxy is divided into 4 quadrants using standard trigonometry definitions, as illustrated in the diagram above.

EXERCISES

1. If a person in Charlotte looks straight up, what is the declination of the direction the person is looking?
2. If a star rising in the east and is at an elevation of 30°, then how much will the RA change when the object is directly overhead?
