
Building a GnuRadio Spectrometer for an HI Radio Telescope
Explained

Part 1: A Simple Spectrometer

Block diagram, in its simplest form:

oscmocomm
Source

FFT Multiply
Conjugate Integration

input from Airspy
SDR

fast Fourier transform
– determines the

frequencies present in
the incoming signals

“squares” the FFT
output to get the power

of the signal at each
frequency

provides a
graphical display

of the data

Vector
Sink

Adds
corresponding

components of the
signal vector to

cancel noise

The completed Gnuradio program:

Building the Spectrometer, with Explanations

osmocomm Source block:

- indicates the Airspy as the input block, and its settings.

Settings:

• Device Arguments

◦ airspy=0 identify Airspy as the input device

◦ bias=1 indicate that the computer is to supply power to Airspy

• sample Rate: samp_rate value set as 10 MHz in Variable block

• Ch0: Frequency: center_freq

◦ indicates middle frequency of the 10 MHz Airspy bandwidth, which we
will set at 1419 MHz in the center_freq Variable block.

• RF Gain: 17

• IF Gain: 12

• Leave thd other settings at their default values.

Stream to Vector block:

- bundles the continuous data stream from the osmocomm block into
vector chunks to be processed by the FFT block.

Settings:

• Num items: vec_length variable set by a Variable block (value = 4096)

• Vec Length: 1

• NOTE: This nomenclature is confusing; the Vec Length is not really a
vector length; it indicates that 1 bunch of 4096 Num Items is sent into the
FFT at a time. This is not to be confused with the variable vec_length,
which does describe a vector length.

FFT block:

- performs a Fast Fourier Transform on the data, one vector stream at a
time.

Settings:

• Input Type: Complex

• FFT Size: vec_length (value = 4096)

• Window: window.blackmanharris(vec_length)

• NOTE: There is a vector size needed in the Window function that must
match the FFT size. (It’s easy to overlook this.)

Multiply Conjugate block:

- calculates the product of the FFT output with its complex conjugate.

- This results in a computation of the spectrum power, which is what we
want displayed.

Settings:

• Vec Length: vec_length

Complex to Real:

- Converts the data stream to a real value.

Settings:

• Vec Length: vec_length

Integrate:

- Sums up data by adding corresponding components of the data vector.
This provides a method for reducing the noise. Ideally with each
summation the noise cancels itself out, due to its randomness, while
the signal constructively adds to a greater value with each sum.

Settings:

• IO Type: Float

• Decimation: int(samp_rate/vec_length)

◦ This indicates the size or number of data values to add up.

◦ Example:

For samp_rate = 10 MHz = 1.0 x 107 and vec_length = 4096:

samp_rate/vec_length = 1.0 x 107 Hz/ 4096 = 2441 per sec.

2441 summations are done each second, which means the
summation of the vectors are done so that the matching
components of the vectors are added, reinforcing peaks at
each frequency and canceling corresponding noise at each
frequency.

• Vec Length: vec_length

QT GUI Vector Sink:

- This displays the processed signal in a signal vs. frequency graph.

Settings:

• Vec Size: vec_length

• X-Axis Start Value: 1414 MHz = 1414e6

◦ We want the 1420.4 MHz of the HI signal to be displayed
approximately in the middle of the graph. We will set the 10 MHz
sample rate of the Airspy to start at 1414 MHz and stop at 1424 MHz.

• X-Axis Step value: samp_rate/vec_length

◦ samp_rate/vec_length = 1.0 x 107 Hz/ 4096 = 2441 channels from
1414 MHz to 1424 MHz

• Axis labels are as indicated.

• NOTE: The axis units are not automatically displayed on the graph,
which is why they are included in the X-Axis Label. The X-Axis
Units setting will enable the units of the x-axis (Hz) to be displayed
when a the cursor is moved to an (x, y) coordinate on the screen.

• Autoscale: Yes

• Y min: 0

• Ymax: whatever (since Autoscale is on)

• Leave other settings at their default values.

