

Introduction to GNUradio, Software Defined Radio, and Digital

Signal Processing

Rhys Lockard

1 Introduction

 Since the development of SDR or Software Defined Radio, signal processors have began to move

away from using analog devices to using a computer with SDR installed, in which the signal is

processed in a similar fashion as with an Analog but with the ability of adapting the software to the

needs of the user.
 For my research purpose; GNU-radio was the preferred software.

2 Linux and GNU-radio

 In order for me to utilize GNU-radio it was necessary to install Linux. This was my first

introduction the operating system and I ended up having a few simple issues.

2.1 Installing Linux

 Getting Linux installed was not very difficult. I chose Linux Mint as the desktop is most similar to

that of windows. With that I created a bootable USB drive with windows and installed Linux Mint as a

dual boot with windows 10. This way allows for the seamless switch back and forth between the two

operating systems.
 After getting Linux installed and booting it up is where I came into issues. When I did the install,

Linux Mint had issues with the current Nvidia driver, and as a result when I sent the graphics through

the video card as opposed to the on board graphics on the processor, on login I would just have a black

screen with a blinking cursor in the top left-hand side. In order to fix this; I had to do a complete wipe

of both windows 10 and Linux Mint, Reinstall both, and then go to Nvidia website and found a

corrected driver. Upon making those changes I was able to boot up into Linux Mint

2.2 installing GNU-radio

 This was done by following the directions given on http://wvurail.org/dspira/labs/01/#11-

installation-guide. I followed the guide to the letter and had absolutely no issues with installing GNU-

radio.

2.3 Installing RTL-SDR
 The RTL-SDR is the device that connects to your computer via USB and allows the user to

receive radio signals from an antenna. It does this by allowing the transfer of raw I/Q samples to the

computer.

http://wvurail.org/dspira/labs/01/#11-installation-guide
http://wvurail.org/dspira/labs/01/#11-installation-guide

 The device that I chose pictured above is the RTL-SDR v3. This device was designed specifically

with SDR needs in mind and is cheaper compared to Airspy or the FlightAware dongle. The RTL-SDR

v3 has a bandwidth of 2.4 MHz with a frequency range of 500 kHz – 1766MHz. And since it will be

used for detecting neutral Hydrogen that frequency range was satisfactory.
 In order to install the device I followed instructions given by

https://osmocom.org/projects/sdr/wiki/rtl-sdr#Credits. Open a terminal in Linux and enter the

following commands:

 Once those instructions have been followed my computer was able to access the dongle.

2.4 Using GNU-radio

https://osmocom.org/projects/sdr/wiki/rtl-sdr#Credits

 After Installing GNU-radio I began to mess around with it. I put together various flow graphs to

help practice and understand Digital Signal Processing. With that I built; Gaussian Noise block,

Histogram, Waveform generators, and a FM-Radio.

 Gaussian Noise Block

Histogra

m 1

Histogram

2

 Waveform Generator 1

 Waveform Generator 2

 FM-Radio

3 Antenna

3.1 Design Choice

 The next stage of my research came to finding a simple antenna design and building it. For my

purposes I chose a Spider Antenna. They are typically more efficient than a normal monopole and since

it would be used for receiving airplane data I wanted it to be as efficient as possible

3.2 Calculations

 The Legs and the main receiving antenna length were calculated from the equation

 λ = C/f, C = 3.0*108 m/s f = 1.09*109 MHz

 λ = 65.43 MM

 D (θ,φ) = 1.5

 Ddb = 10Log10(D(θ,φ)

 Ddb = 1.76 DB

 = Rs f = 1.09*109 MHz μo = 4π*10-7 N/A2

 Rs = .00861 Ω

 = Rohmic L = .068 m A = .00259 m

 Rohmic = .03599 Ω

 = Rr n = ωε ε = 8.85*10-12 ω = 2πf

 n = .606 ω = 6.85*109

 Rr = .03135 Ω

= Er Er = .4655 or 47%

3.3 Building

 Putting the antenna together took some finesse. Especially the legs, the solder did not want to

stick to the aluminum casing on the S0-329 connector. After some clamping and maneuvering I was

able to get them all in their proper positions

4 Dump1090 and RTL-SDR

4.2 Installing Dump1090

 The flight tracking software that I used is Dump1090. And following the install instructions given

at https://github.com/MalcolmRobb/dump1090. I went with Malcolm Robb’s version of dump1090 as

his program has some applications with Flight Aware; a website for amateur aircraft enthusiasts to

submit their data.

4.3 Using Dump1090

https://github.com/MalcolmRobb/dump1090

 After getting everything properly installed and set-up I began to collect data using my antenna, the

RTL-SDR v3 and Dump1090.

 I collected data for a couples days and wanted to be able to see it visually. I discovered

https://github.com/aarkebauer/dump1090plot. This a program written by aarkebauer, in which it takes

the data from Dump1090 and then plots a 3D map in which you can now see the paths of the planes

while they were within range of my antenna. Though I could not get it to work it was a good learning

experience.

5 Radio Observatory

 The next stage in my research was doing some actual astronomical readings. The goal being to

make a spectrometer in GNUradio and build a LNA (Low Noise Amplifier) and then use those devices

to inspect the 21cm band of neutral Hydrogen that sits at 1420 MHz frequency.

5.1 LNA

 The LNA was designed by Dr. Kevin Bandura, the Faculty Advisor for WVU Radio Astronomy

Instrumentation Lab. This was my first experience with this kind of soldering and working with

components that small but it turned out well.

https://github.com/aarkebauer/dump1090plot

5.2 Spectrometer

 The spectrometer was an area where I had a lot of difficulty. I ended up using the spectrometer

written by Dr. Bandura and is available at https://github.com/WVURAIL/dspira/tree/master/grc-

flowgraphs. Below is the flow-graph for the spectrometer.

https://github.com/WVURAIL/dspira/tree/master/grc-flowgraphs
https://github.com/WVURAIL/dspira/tree/master/grc-flowgraphs

5.2 Data Collection

 Now that I had all the components it was time to begin collecting data. Taking A horn antenna

and pointing it to the Galactic Center of the Milky Way in which the 21cm neutral Hydrogen is most

dense.
 After beginning to receive some data I sent a picture of it to Dr. Bandura and Pranav Sanghavi.

 In which they told me that was not how it was supposed to look and that there must have been

something wrong. I re calibrated the system by pointing the horn at the ground and then pointing it an

empty portion of the sky. I then began to collect data again and saw below.

 As the data appeared to be the same we knew something was wrong. I went through and changed

the SMA cables that connected the LNA to the Horn and then to the V3 dongle. And then re-calibrated

and collected data again.

 Again the data was incorrect. This time we decided that there must be something wrong with the

LNA. Dr. Bandura began doing some testing and discovered there must be an issue with the resistance

and capacitance on the board. With this we changed 4 resistors and 2 capacitors and the data came in

as expected.

Calibration:

 Gain Map

Temperature map

Galactic Map

6 Conclusion

 The WVURAIL DSPIRA project was an awesome learning experience and gave light to what I

would like to do as a career. The labs that Pranav had prepared at http://wvurail.org/dspira/labs/ were

the most helpful to completing this project.

7 Code

aarkebaeur Plot Code

 #!/user/bin/env python2
import re, os
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def main():
 createfiles() # takes the full data3.json and breaks it down into a single file for each
 # plane (based off of icao hex code)
 plot() # pull data from each file and make a 3d plot of each plane's path based
 # on the latitude, longitude, and altitude data they contain

def createfiles():
 dat = open("data3.json", 'rU');

 flag = { } # create dictionary to be used to store hex codes. If a hex code has already been

stored,
 # then the data file must exist for that code, so don't write it, just append to it
 i = 0; # keys for dictionary (arbitrary, serve no purpose)

 for line in dat: # read source code

 hexdat = re.search('("hex":")([\w|\d]*)', line);
 if hexdat:
 hexdata = hexdat.group(2);
 flightdat = re.search('("flight":")([\w|\d]*)', line);
 if flightdat:
 flightdata = flightdat.group(2)
 latdat = re.search('("lat":)([-]*[\d]*\.[\d]*)', line);
 latdata = latdat.group(2)
 londat = re.search('("lon":)([-]*[\d]*\.[\d]*)', line);
 londata = londat.group(2)
 altdat = re.search('("altitude":)(\d*)', line);
 altdata = altdat.group(2)
 trackdat = re.search('("track":)(\d*)', line);
 trackdata = trackdat.group(2)
 speeddat = re.search('("speed":)(\d*)', line);
 speeddata = speeddat.group(2)

http://wvurail.org/dspira/labs/

 filename = "data3" + ".json"

 if str(hexdata) in flag.values(): # If a hex code has already been stored, then the

data file
 # must exist for that code, so don't write it,

just append
 wrfile = open(filename, 'a');
 wrfile.write("\n")
 else:
 wrfile = open(filename, 'w');

 wrfile.write(hexdata + "\n");
 if flightdat:
 wrfile.write(flightdata + "\n");

 # if latitude, longitude, or altitude data is a 0 (i.e. not present), don't write
 # any of the three - this cleans up the lists to eliminate bad data points when plotting
 if float(latdata) != 0:
 if float(londata) != 0:
 if float(altdata) != 0:
 wrfile.write(latdata + "\n");
 wrfile.write(londata + "\n");
 wrfile.write(altdata + "\n");
 else:
 wrfile.write("\n");
 wrfile.write("\n");
 wrfile.write("\n");
 wrfile.write(trackdata + "\n");
 wrfile.write(speeddata + "\n");
 wrfile.close()

 flag[i] = str(hexdata) # update dictionary
 i +=1

def plot():

 ##
 # This is where data is extracted from files and put into lists for plotting
 ##

 allalts = { }
 alllats = { }
 alllons = { }
 allflights = { }
 counter = 0

 for file in os.listdir("/home/rhys"): # If an empty file named .DStore or something exists, it may

not work - ?

 filename = "data3" + ".json";
 workingfile = open(filename, 'rU')

 worker = open(filename, 'rU'); # must open the file under a different name to count

number of lines
 length = 0;
 for line in worker: # count number of lines in file to determine how long lists (below)

should be
 length +=1;

 flightnumberlines = [x*8+1 for x in range(0, length)]
 latitudelines = [x*8+2 for x in range(0, length)]
 longitudelines = [x*8+3 for x in range(0, length)]
 altitudelines = [x*8+4 for x in range(0, length)]

 # initialize these as the empty list
 latlist = list()
 longlist = list()
 altlist = list()
 flightnumberlist = list()

 i = 0
 for line in workingfile:
 if i in latitudelines:
 latlist.append(line[0:len(line)-1])
 if i in longitudelines:
 longlist.append(line[0:len(line)-1])
 if i in altitudelines:
 altlist.append(line[0:len(line)-1])
 if i in flightnumberlines:
 flightnumberlist.append(line[0:len(line)-1])
 i += 1

 #print altlist
 #print latlist
 #print longlist
 #print flightnumberlist

 # remove all null elements from the lists (planes that produced 0 complete position data

points)
 altlist = map(float, filter(None, altlist))
 latlist = map(float, filter(None, latlist))
 longlist = map(float, filter(None, longlist))
 flightnumberlist = filter(None, flightnumberlist)

 allalts[counter] = altlist
 alllats[counter] = latlist

 alllons[counter] = longlist
 allflights[counter] = flightnumberlist

 counter += 1

 workingfile.close()
 worker.close()

 #print allalts
 #print alllats
 #print alllons
 #print allflights

 ###

###########################
 ###

###########################
 # THIS IS WHERE PLOTTING OCCURS

 #
 ###

###########################
 ###

###########################

 ###
 # THESE VALUES ARE USED TO FORMAT THE PLOTS #
 ###

 # SET THESE LINES TO CURRENT LATITUDE AND LONGITUDE TO CENTER GRAPH
 currentlatitude = 0.0000
 currentlongitude = -0.0000
 # If the following is set to True it will plot from z = 0
 # If set to False it will plot from z = [minimum altitude] - 1000 ft
 plot_from_ground_level = False

 # The following is used to only plot flights under a certain altitude
 # Set this to float('inf') in order to see all flights
 only_plot_flights_under_this_altitude = float('inf') # to plot all: float('inf')

 # Setting this to True prints out the flight numbers for each plotted line
 # Setting this to False does not display flight numbers
 display_flight_number_labels = True

 # Set the following to True to plot planes WITHOUT flight number data
 # Set it to False to plot ONLY those planes WITH flight number data

 plot_planes_without_flight_numbers = False

 # If set to True planes with flight numbers containing only numbers
 # (e.g. 1653) will be displayed. If set to False then ONLY flight
 # numbers beginning with letters (e.g. UAL1653) will be displayed
 plot_planes_with_number_only_flight_numbers = True

 # Values used to change plot animation parameters are defined below #

 # If set to True all flight numbers will be printed to a document
 # titled flight_numbers.dat. If false, it will not make this file
 print_flight_number_file = False

 ###
 ###
 ###

 plt.ion() # this is necessary for animating (spinning in this case) the plot - it must stay here!!!

 fig = plt.figure(figsize=(15,9)) # this figure size fits well to macbook pro 13.3" screen
 ax = fig.add_subplot(111, projection='3d')

 minimumaltitude = filter(None, allalts.values())
 minimums = list() # initialize list of minimum altitudes of each plane
 for item in minimumaltitude:
 minimums.append(min(item))
 minimumaltitude = min(minimums) # find the absolute lowest altitude to be used as the bottom

of the graph

 if plot_from_ground_level != True: # Described above, used to either plot from 0 up or [minalt -

1000] up
 floor = minimumaltitude - 1000
 else:
 floor = 0

 # these 2 circles are used to give an idea of the locations of the planes - each is ~120 miles in

diameter
 xcircle = range(-100,101)
 xcircle = [float(item) / 100 for item in xcircle] # create a list from -2 to 2 with increment .1
 ycirclepos = [pow(pow(1,2) - (pow(item, 2)), .5) for item in xcircle]
 ycircleneg = [-pow(pow(1,2) - (pow(item, 2)), .5) for item in xcircle]
 ax.plot(xcircle, ycirclepos, floor, color='0.7')

 ax.plot(xcircle, ycircleneg, floor, color='0.7')
 # place the 120mi label at a 45 degree angle (in the NE quadrant of the plot)
 ax.text(-((pow(2,0.5)/2)-.05),(pow(2,0.5)/2)-.05,floor,"60 mi", fontsize=8, color='0.7')

 xcircle2 = range(-200,201)
 xcircle2 = [float(item) / 100 for item in xcircle2] # create a list from -2 to 2 with increment .1
 ycirclepos2 = [pow(pow(2,2) - (pow(item, 2)), .5) for item in xcircle2]
 ycircleneg2 = [-pow(pow(2,2) - (pow(item, 2)), .5) for item in xcircle2]
 ax.plot(xcircle2, ycirclepos2, floor, color='0.7')
 ax.plot(xcircle2, ycircleneg2, floor, color='0.7')
 # place the 120mi label at a 45 degree angle (in the NE quadrant of the plot)
 ax.text(-(pow(2,0.5)-.05),pow(2,0.5)-.05,floor,"120 mi", fontsize=8, color='0.7')

 all_plotted_lats = list()
 all_plotted_lons = list()
 all_plotted_alts = list()
 #feetperdegree = 362776; # to measure altitude in (roughly) degrees latitude
 for plot in range(len(allalts.values())):
 xx = alllats.values()[plot]
 xx = [item - currentlatitude for item in xx] # center the graph around current latitude
 xx = [-item for item in xx] # flip everything over the x axis so directions line up
 # Think about this like you're looking up at the planes
 # from below - positions of the cardinal directions are

swapped
 # compared to looking down from above as you are in

the plot
 yy = alllons.values()[plot]
 yy = [item - currentlongitude for item in yy] # center graph around current longitude
 zz = allalts.values()[plot]
 #zz = [item / feetperdegree for item in zz] # to measure altitude in (roughly) degrees

latitude

 # obtain the flight number, if any
 flightnum = allflights.values()[plot]
 if len(flightnum) != 0:
 # If the flight number is only a number (e.g. 1653), then plot/don't plot according to

setting
 if plot_planes_with_number_only_flight_numbers != True:
 chars = []
 for c in flightnum[0]:
 chars.append(c)
 letters = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M",

"N", "O", "P",
 "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"]
 if chars[0] in letters:
 flightnum = flightnum
 if print_flight_number_file == True:
 flight_num_file = open("flight_numbers.dat", 'a')

 flight_num_file.write(flightnum[0] + "\n")
 else:
 flightnum = " "
 else:
 flightnum = flightnum
 if print_flight_number_file == True:
 flight_num_file = open("flight_numbers.dat", 'a')
 flight_num_file.write(flightnum[0] + "\n")
 else:
 flightnum = " "

 ###############
 # plot the data
 ###############

 # x-axis : latitude (degrees from current location, as set below)
 # y-axis : longitude (degrees from current location, as set below)
 # z-axis : altitude (ft)

 if len(xx) != 0: # don't attempt to plot empty lists

 # if the flight's minimum altitude is under the set threshold, plot the flight
 if only_plot_flights_under_this_altitude >= min(allalts.values()[plot]):
 if plot_planes_without_flight_numbers != True: # this is set/described above
 if flightnum != " ": # plot only planes WITH

flight numbers
 ax.plot(xx, yy, zz) # use ax.scatter(xx, yy, zz) for a scatter

plot, etc.

 # The following statements keep track of all lats, lons, and alts that are

PLOTTED
 # This is used for scaling the final plot, as described below
 for item in xx:
 all_plotted_lats.append(item)
 for item in yy:
 all_plotted_lons.append(item)
 for item in zz:
 all_plotted_alts.append(item)

 if display_flight_number_labels == True:
 ax.text(xx[0],yy[0],zz[0], " "+flightnum[0], fontsize=6)
 else:
 ax.plot(xx, yy, zz) # use ax.scatter(xx, yy, zz) for a scatter plot,

etc.

 # The following statements keep track of all lats, lons, and alts that are

PLOTTED
 # This is used for scaling the final plot, as described below
 for item in xx:
 all_plotted_lats.append(item)
 for item in yy:
 all_plotted_lons.append(item)
 for item in zz:
 all_plotted_alts.append(item)

 if display_flight_number_labels == True:
 ax.text(xx[0],yy[0],zz[0], " "+flightnum[0], fontsize=6)

 # *** all_plotted_lats, all_plotted_alts, all_plotted_lons contain only values of PLOTTED

planes *** #
 # The following obtains min and max latitude and longitude to be used in setting frame limits
 # of the plot - a makeshift way of scaling
 minimumlat = min(all_plotted_lats)
 maximumlat = max(all_plotted_lats)
 minimumlon = min(all_plotted_lons)
 maximumlon = max(all_plotted_lons)
 # The z-axis autoscale seems to be good enough, but these are here anyway for possible future

use
 minimumalt = min(all_plotted_alts)
 maximumalt = max(all_plotted_alts)

 #ax.set_zlim(bottom=floor)

 # to keep the graph centered, the x and y limits must all be the same. So, I chose the largest
 # relative lat OR lon to be the absolute limit so that every point will stay within the frame
 # note: the z autoscale seems to be good enough
 s = max(abs(minimumlat), abs(minimumlon), abs(maximumlat), abs(maximumlon))
 ax.set_xlim(left=-s, right=s) # x is latitude
 ax.set_ylim(bottom=-s, top=s) # y is longitude

 #plt.show() # this is used for a static graph

 # make lines for x and y axes that extend slightly past the 120mi (2 degrees) marking circle
 xlimits = ax.get_xlim()
 ylimits = ax.get_ylim()
 ax.plot([float(xlimits[0])-.5, float(xlimits[1]+.5)], [0,0], [floor, floor], color='0.7')
 ax.plot([0,0], [float(ylimits[0])-.5, float(ylimits[1]+.5)], [floor, floor], color='0.7')

 # label the cardinal directions
 ax.text(0, s+.55, floor, " E", color='0.7')
 ax.text(0, -s-.55, floor, " W", color='0.7')
 ax.text(s+.55, 0, floor, " S", color='0.7')
 ax.text(-s-.55, 0, floor, " N", color='0.7')

 zticks = ax.get_zticks() # get the values that are displayed on the z axis by default
 ax.plot([0,0], [0,0], [floor,max(zticks)], color='0.7') # line for z axis

 # this prints a the default z-axis labels next to the new, centered, z axis
 itemnumber = 0
 for item in zticks:
 if (itemnumber % 2 != 0): # display every other label from the default z-axis labels
 ax.text(0,0,item," " + str(int(item)), fontsize=8, color='0.7') # z axis drawn at x=0, y=0
 itemnumber+=1

 plt.axis('off') # turn ALL axes off

 # this is to rotate the plot at an elevation of 30 degrees through a full 360 degrees azimuthally
 # it quits after rotating 360 degrees (or whatever the upper limit of the range is)

 ###

#########
 ###

#########
 # ANIMATION PARAMETERS:
 speed = 1.5 # This is the speed at which the plot rotates. *** Higher numbers = slower ***
 revolutions = 3 # This is the number of revolutions that the plot will complete
 ###

#########
 ###

#########

 azimuths = range(0,int(((360*revolutions)*speed)+1))
 azimuths = [float(item) / speed for item in azimuths]
 for azimuth in azimuths:
 ax.view_init(elev=45, azim=azimuth)
 plt.draw()

This is the standard boilerplate that calls the main() function initially
if __name__ == '__main__':

 main()

Reshape Data Code

 ##########################
Read and Reshape Data
##########################

specl = np.fromfile("/media/rhys/Radio.Observatory/signal1.dat", dtype=np.float32) #open data in

read mode and put all the data as a numpy array spec
specl.shape # .shape shoews the array dimension.shape
spec = spec.shape((-1,4096)) # reshapes data into stacks of 4096 points
spec.shape # get the shape of the new array. The first number is the time integration

save the text file to open an excell

np.savetxt("ReshapedData.csv",np.transpose(spec), delimiter=',') # saved to file ReshapedData.txt

with a comma delimiter

Plot

plot(spec[0]) # Plots the first integration
plot(spec[i]) # Plots the i-th intergration

